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Abstract: Petri nets are a well-known formalism for the description of concurrency and synchronization inherent in 

modern distributed systems. The graphical representation of Place-Transition net is called model. In order to understand 

the properties of the model and to be sure that it behaves as it should, the model can be analysed and simulated. In this 

paper we are going to show simple model for the Cookie Vending Machine, designed with stochastic petri nets. Then 

we are going to analyse and simulate the model using the Petri Net Toolbox in Matlab. At the end the collected results 

from analyses will be discussed. 
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I. INTRODUCTION 

 

The term Petri Net origins from Carl Adam Petri’s 

dissertation [1] submitted in 1962 to the faculty of 

Mathematics and Physics at the Technical University of 

Darmstadt, West Germany. Development and applications 

of Petri Nets date from 1970, when the Computation 

Structure Group at MIT was most active in conducting 

Petri-net related research, and produced many reports and 

thesis on Petri Nets. In that time European researchers 

were very active in organizing workshops and publishing 

conference proceedings on Petri nets. Later in 1985 

another series of international workshops initiated, which 

target timed and stochastic nets and their applications to 

performance evaluation [2]. 
 

Petri Nets are graphical and mathematical promising tool, 

for describing and studying systems which can have 

properties like concurrency, can be asynchronous, 

distributed, nondeterministic and/or stochastic. Also as a 

graphical tool can be used similar to flow charts, block 

diagrams, and networks. Because of this, they have been 

proposed for a very wide variety of applications and any 

area that can be described graphically and that needs 

representation of parallel or concurrent activities. Some 

application areas are: performance evaluation, 

communication protocols, distributed-software systems, 

distributed-database systems, concurrent and parallel 

programs, flexible manufacturing/industrial control 

systems, discrete event systems and etc. [2]. 
 

The use of computer-aided tolls is needed for practical 

application of Petri nets. Most of the research groups use 

their own tools to analyse and simulate various kinds of 

Petri nets. References where Petri nets are applied in 

practice [3]-[5], and commercial and open source tools 

currently available [6] are given in [7]. Common technics 

for analysing various types of Petri nets [8] are given in 

[9]. 

 

 

The rest of this paper is organized as follows: in section A 

is given repetition of Petri nets, its formal definition and 

informally the transition enabling and firing rule. Also are 

given formal definition for four types of analysis: marking 

graph (covering tree), traps and cotraps, place invariants 

and transition invariants.  

 

These analyses are then applied on the Cookie Vending 

Machine model in section B. There will be used the Petri 

Net Toolbox tool to analyse and simulate the model 

defined with stochastic Petri nets. Finally, section C 

contains discussion about the collected results. 

 

II. OVERVIEW 

 

The graphical representation of a Place-Transition net 

com-prises the following components: 

 

- Places drawn by circles. Places model conditions or 

objects, e.g., a program variable. 
 

- Tokens drawn by black dots. Tokens represent the 

specific value of the condition or object, e.g., the value of 

a program variable. 
 

- Transitions drawn by rectangles. Transitions model 

activities which change the values of conditions and 

objects. 
 

- Arcs, specifying the interconnection of places and 

transitions thus indicating which objects are changed by a 

certain activity. 

 

A Petri net is a particular kind of directed graph, together 

with an initial state called the initial marking M0. The 

underlying graph N of a Petri net is a directed, weighted, 

bipartite graph consisting of places and transitions, where 

arcs are either from a place to transition or from a 

transition to a place. This is presented on Figure 1. 
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Fig. 1 Example petri net 

 

Ordinary Petri net (definition) - An Ordinary Petri net is 

one where all arcs are unity-weighted (and hence 

unlabelled), mathematically represented by a four-tuple N 

= (P, T, W
-
, W

+
) where p P  , t T  , ( , ) 1W p t  and 

( , ) 1W p t  . 

 

Marked Petri net (definition) - Marked Petri net is a five 

tuple N = (P,T, W
-
, W

+
,M0) where: 

 

• P = {p1, … pn} is a finite and non-empty set of places, 

• T = {t1, … tm} is a finite and non-empty set of 

transitions, 

• P ∩ T = ∅, 

• W
-
, W

+
: P × T → N0 are the backward and forward 

incidence functions, respectively 

• M0: P → N0 is the initial marking. 

 

Stochastic Petri net(definition) - Stochastic Petri net[13]is 

a form of Petri net where the transitions fire after a 

probabilistic delay determined by a random variable. 

 

The net on Figure 1 is Marked and not ordinary Petri net 

and can be described as: P = {H2, O2, H2O}, T = {t}, M0 = 

{2, 2, 0}, W
-
 = [(H2, t), (O2, t)] = [2, 1], W

+
 = [(t, H2O)] = 

[2]. W
- 
and W

+
 represent the arcs from places to transitions 

and from transitions to places accordingly.  

 

Execution of a petri net consists of tokens that travel from 

one or multiple states through transition to some other 

state or multiple states. This is called firing of transition 

and as result the marking of the places in the petri net 

changes. A state or marking of Petri nets is changed 

according to the following transition firing rule: 

 

 A transition t is said to be enabled if each input place p 

of t is marked with at least w(p, t) tokens, where w(p, t) 

is the weight of the arc from p to t 

 An enabled transition may or may not fire (depending 

on whether or not the event actually takes place). 

 A firing of an enabled transition t removes w(t, p) to-

kens to each output place p of t, where w(t, p) is the 

weight of the arc from t to p. 

 

Figure1 and Figure2 are illustrating the transition rule, 

using the well-known chemical reaction: 2H2 + O2→ H2O. 

Two tokens in each input place in Figure 1 show that two 

units of H2 and O2 are available, and the transition t is 

enabled. After firing t, the marking will change to the one 

shown in Figure 2, where the transition t is no longer 

enabled [2]. 

 
Fig. 2 An illustration of transition firing rule. The marking 

after firing t, where t is disabled 

 

In Figure 1 and Figure 2 the possible markings can be M0 

also called initial marking, and after execution of t the new 

marking M1 = {0 ,1, 2}. Real-world systems described 

with Petri nets can have much more states and transitions. 

Often it is difficult to predict if some marking can be 

reached, or some transition can fire. This is connected with 

the term state properties and can be determined with 

applying some analysis techniques which will be discussed 

in the next section. 

 

A. Analysis techniques 

There are some very common properties that are often 

asked about in a system net N: does N terminate? Can N 

reach a marking that no longer enables any transitions? 

Can each transition always become enabled again? From 

each reachable marking, is it possible to reach the initial 

marking again? Some of these questions can be answered 

with the marking graph(covering tree). 

 

Marking graph: For a system net N and an initial 

marking M0, a marking M of N is reachable if there exists 

a sequence of steps  with Mn= M. The reachable 

markings and steps of a system net N can be compiled in 

marking graph G of N [9]. Most of the properties of the 

system net N can be defined and characterize them as 

properties of the marking graph G. 
 

Properties of a Petri net that are dependent on the initial 

marking are referred to as behavioral properties. Those 

that are independent of the initial marking and dependent 

only on the structure of the Petri net are called structural 

properties [10, 11]. Behavioural properties are: 

 

- Reachability (definition) - The marking nM is said to be 

reachable from 0M if there exists firing sequence  that 

will yield nM .  

- Boundedness (definition) - A Petri net is k-bounded 

with respect to an initial marking if the number of tokens 

in any of its places never exceeds k for any marking in the 

reachability set 0 )(R M , i.e. ( )M p k , p P  and

0( )M R M  , where  ( )M p is the number of tokens in 

place p in marking M. 

- Safe (definition) - A Petri net is safe if it is k-bounded 

and k=1 

- Liveness (definition) - A Petri net is said to be live if for 

all transitions there is a way to fire transition in any 

marking 'M   reachable from the initial marking 0M . 
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- Deadlock (definition) - A marking 'M reachable from the 

initial marking 0M is a deadlock if none of the transitions 

of the Petri net is enable in 'M . 

- Reversibility (definition) - A Petri net N with initial state 

0M is said to be reversible if for each marking 

0 )(M R M , 0M is reachable from M. 

- Coverability (definition) - A marking M in a Petri net N 

with initial state 0M is said to be coverable if, there exists 

a marking 0

' )(M R M  such that
' ( ) ( )p M pM  for all

p P . 

- Persistence (definition) - A Petri net is said to be 

persistent if, for any two enabled transitions, occurrence 

of one transition will not disable another. 

 

Structural properties of Petri nets include: 

- Structurally live (definition) - A Petri net is said to be 

structurally live if there exists an initial marking 0M such 

that net is live. A Petri net which is live is also structurally 

live, but the reciprocal is false. 

- Structurally bounded (definition) - A Petri net is said to 

be structurally bounded if it is bounded for any initial 

marking 0M . Structural boundedness requires that the net 

remains bounded for all possible initial marking. 

- Conservativiness (definition) - A Petri net is 

conservative, if all transitions fire token-preservingly, i.e. 

all transitions add exactly as many tokens to their output 

places as they subtract from their input places. 

- Repetitivness (definition) - A Petri net is said to be 

repetitive if there exists an initial marking 0M and a 

firable sequence  in which each transition appears an 

unlimited number of times. 

 

Traps and Cotraps: Trap of an elementary system net N 

is a subset Q of the places of N such that for each 

transition t of N the following holds: 

 

If there exists place pQ such that p t , then there also 

exists a place q Q such that q t  . (1) 

 
A trap Q of an elementary system net N is called marked 

ina marking M if there exists at least one place q Q such 

that ( ) 1M q  . If 1{ ,..., }rQ q q is a trap marked in M, 

then the following holds: 

1( ) ... ( ) 1rM q M q  
(2) 

 

For each step '
t

M M  of N there exist only two 

possibilities: either there exists a place p Q  such that

p t , in which case, according to (1), there also exists a 

place q Q such that q t . Then '( ) 1M q  and thus 

1'( ) ... '( ) 1rM q M q    (3) 

 

Or there exists no such place p [9]. 

 
Fig. 4 Trap {p,q…} and cotrap {p,q…} accordingly 

 

As a counterpart to a trap, a cotrap of an elementary 

system net N is a subset Q of the places of N such that for 

each transition t of N the following holds: 

If there exists a place pQ such that p t  ,then there 

also exists a place q Q such that q t . (4) 

Let 1{ ,..., }nQ q q be a cotrap that is unmarked in a 

marking M, that is 

1( ) ... ( ) 0nM q M q   (5) 
 

Let '
t

M M be a step. Then for each place 

: ( ) 1p t M p  . This means, because of Eq. (5), that 

there cannot exist a place q Q such that Q t . Because 

of (4), there also cannot exist a place p Q such that

p t [9]. Then it follows from Eq. (5) that 

1'( ) ... '( ) 0nM q M q   (6) 

 

Place and Transition invariants: The markings in 

elementary Petri net can be written as column vector 

1

k

a

M

a

 
 

  
 
 



 
 

Where aiis the number of tokens in the I th place. Similar 

transition t can be also written as vector 

1

k

z

t

z

 
 

  
 
 

  where  

1,

1,

0,

iz def




 



,

,

i i

i i

if p t and p t

if p t and p t

otherwise

 

 

 

   

 

for 1,...,i k . Step '
t

M M can be expressed as t . This 

is called vector representation of steps [9]. For each 

transition it  in Petri net N can be created vector it , which 

together form the matrix N  (incidence matrix) and can be 

defined as 

11 1

1

1

( ,..., )

l

l

k lk

z z

N def t t

z z

 
 

   
 
 



 


 

 

Also N can be calculated from the backward and forward 

incidence matrices: 

N W W    (7) 

 

Valid equations can be derived from solutions of the 

system of equations 
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0x N 


 (8) 

 

where 0 (0, ..., 0)


 is an l-dimensional row vector. A 

vector 1( ,..., )kn n n solves (8) if and only if 0n t  for 

each transition t of N . A solution n  of (8) is called a 

place invariant of N .Similar if we calculate incidence 

matrix N as 

N W W   (9) 

 
then every solution n of (8) is called transition invariantof

N . 

 

 
 

 
Fig. 5 Example Petri net and its incidence matrix 

 

On Figure 5 is displayed example Petri net with its 

incidence matrix N W W   . From here and (8) can be 

constructed the place invariant equations 

1 2 3

2 4 2 4

1 5 1 5

3 4 5 1 2 3

1 3 4

0

0

0

0 0

0

x x x

x x x x

x x x x

x x x x x x

x x x

   


    
     

      
    

 

and for 1 1x  will get place invariants 1i and 2i  

 
 

Now that we know the techniques for analysing Petri nets 

we are ready to analyse the “Cookie Vending Machine 

Model”. 

B. The Cookie Vending Machine Model 

The cookie vending machine consists of a coin slot and a 

compartment into which the packets of cookies are 

dropped. It has the ability to return the inserted coin and 

refuel its storage if empty. This functionality is modeled 

with Stochastic Petri net in Figure 6.  

 

 
Figure 6. The cookie vending machine model 

 

At the beginning the state “counter” and the state “storage” 

contains by five tokens and the insertion of a coin is 

possible. All of the transitions happen with exponential 

probability of 0.3. The arcs from state “cash box” to 

transition “c” and from transition “c” to states “counter” 

and “storage” have weight of 5.  

 

All other arcs have weight of 1. After insertion of a coin 

the state “coin slot” gets one token, the state “insertion 

possible” loses one token and the transitions “a” and 

“return coin” becomes concurrent. If any of these two 

states happens the insertionof coin will be enabled again. 

After the execution of transition “a”, the state ”counter” 

and “no signal” loses by one token and the states ”cash 

box” and “signal” are getting by one token. This enables 

transition “b” which returns by one token to the states “no 

signal” and “compartment” and removes one token from 

the state “storage”. After five executions of transition “a”, 

the transition “c” becomes enabled and the states “counter” 

and “storage” will get by five tokens.The current 

implementation, allows execution of the transition “insert 

coin” while transition “take packet” has not been fired. 

This is not case in the real world system, but the example 

is adjusted for analysis and simulation purposes. 

 

C. Analysis 

The model on Fig. 6 is Markednot ordinary Petri net (P, T, 

W
-
, W

+
,M0) which comprises of: 

P: {coin slot, insertion possible, counter, storage, signal, 

no signal, cash box, compartment}, 

T: {insert coin, return coin, a, c, b, take packet}, 

W
-
: {(coin slot, return coin), (coin slot, a), (insertion 

possible, insert coin), (counter, a), (storage, b), (signal, b), 

(no signal, a), (cash box, c), (compartment, take packet)} = 

{(-1), (-1), (-1), (-1), (-1), (-1), (-1), (-5), (-1)}, 

W
+
: {(insert coin, coin slot), (return coin, insertion 

possible), (a, insertion possible), (a, cash box), (a, signal), 

(c, counter), (c, storage), (b, no signal), (b, compartment)} 

= {(1), (1), (1), (1), (1), (5), (5), (1), (1)}, 
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M0: (0, 1, 5, 5, 0, 1, 0, 0). 

In order to analyze and simulate the model we have used 

the Petri Net Toolbox tool in Matlab. Most of the 

behavioral and structural properties can be determined 

from the coverability tree (Marking graph) which is 

presented in Figure 7. The Structural properties of the net 

are: 

 

 The net is unbounded (unbounded place 

“compartment”) 

 The net is partially conservative. Places that do not 

belong to any P-invariant support: compartment 

 The net is repetitive 

 The net is consistent 

 

 
Fig. 7. Covering tree 

 

All of the places are bounded except the “compartment”. 

The following equations hold for the bounded places: 

 

 coin slot + insertion possible = 1 

 signal + no signal = 1 

 counter + cash box = 5 

 storage + no signal + cash box = 6 

 

From (9) can be calculated the incidence matrix N (Fig. 

8). Using (8) can be constructed the place invariant and 

transition invariants equations (Fig.9.a and 9.b 

accordingly). 

 

 
Fig.8 Incidence matrix for the cookie vending machine 

 

1 2

1 2 1 2

1 2 3 5 6 7 3 4 7

3 4 7 4 5 6

4 5 6 8 8

8

0

0

0
)

5 5 5 0

0 0

0

x x

x x x x

x x x x x x x x x
a

x x x x x x

x x x x x

x

 


   
         

 
     

      


   



1 2 3

1 2 3

3 4

4 5

3 5 6 4 1 2

3 5

3 5

3 4

5 6

0

0

5 0

5 0
) 5

0

0

5 0

0

x x x

x x x

x x

x x
b x x x x x x

x x

x x

x x

x x

  

   

   


 
     

 
   


 
    

Fig.9.a Place invariant equations.9.b Transition invariant 

equations 

 

At most four place invariants are linearly independent and 

those are shown in Figure 10. 

 

 
 Fig. 10 Place invariants 

 

From the place invariants table, we prove that every state 

that belongs to some invariant is bounded, and this is the 

case for all of the states except for the state 

“compartment”. At most two transition invariants are 

linearly independent and those are shown in Figure 11. 

 

 
Fig. 11 Transition invariants 

 

From the transition invariants table can be easy recognized 

the weight of the transitions. For example, if one execution 

of the transition “c” happens, this means that previously 

transitions “insert coin”, “a”, “b” and “take packet” have 

been executed five times. 

 

D. Simulation 

Our stochastic model can be viewed as a queue with 

exponentialarrival A(t) distribution, exponential service 

distribution B(x) and one server (M/M/1 queue). 

Scheduling strategy at the server is FCFS (First Come 

First Served) and are used 1000 samples (customers). 

Important outputs of the simulation are: 

-Arrival rate (  ) defined as

 
0 0

1 1

tA ttd tde


 

 

 
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- Service rate (  ) defined as

0 0

1 1

( ) xxdB x xde


 

 

 

 

- Service sum - total number of firings during the 

simulation 

- Service distance - the mean time between two successive 

firings  

- Utilization - the fraction of time when server is busy 

For the places important outputs are: 

- Arrival sum - the total number of arrived tokens 

- Throughput sum - the total number of departed tokens 

- Arrival distance - the mean time between two successive 

instants when tokens arrive to the place 

- Throughput distance - the mean time between two 

successive instants when tokens depart from the place 

- Waiting time - the mean time a token spends in a place 

- Queue length - the average number of tokens weighted 

by time 

 

In order to see the execution of the transitions we 

simulated the model in three cases:  

I. All of the transitions with same probability of 0.3 

II. Probability “1” for all transitions 

III. Probability “1” for the transitions “insert coin” and 

“take packet” all others with probability 0.3 

 

Transition indices for the simulation (I), (II) and (III) are 

shown on Figure 12-17 accordingly. 

 

 
Figure 12. Transition indices I 

 

 
Figure 13. Place indices I 

 

 
Figure 14. Transition indices II 

 
Figure 15. Place indices II 

 

 
Figure 16. Transition indices III 

 

 
Figure 17. Place indices III 

 

From transition and place tables with indices can be 

identified that values for some states or transitions have 

similar value. From 1000 samples, more than 1/3 are 

“insert coin”. The indices for transitions “a”, “b” and “take 

packet” have similar values. The same goes for the places 

“coin slot” and “insertion possible” as a group, and places 

“counter”, “cashbox”, “signal”, “no signal”, “compartment” 

and “store” as a group. 

 

III. CONCLUSION 

 

Petri nets are well known formalism for describing 

processes. The properties and behaviour of them can be 

analysed and synchronized using computer tools. We 

applied the Marking graph, Traps and Cotraps and Places 

and Transition invariants techniques on the Cookie 

Vending Machine model designed with stochastic Petri 

nets.  

 

To confirm this and to analyse the model we used the Petri 

net Toolbox. The tool was not able to return some 

properties for the net because it was ordinary. At the end 

we simulated the model for three different scenarios with 

different probabilities which resulted with similar output 

values. 
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